

Remote Sensing of Water Systems

National Centre for Earth Observation
NATURAL ENVIRONMENT RESEARCH COUNCIL

8th Advance Training Course on Land Remote Sensing

TOWARDS ADVANCED ESTIMATES OF ECOSYSTEM TRANSPIRATION USING MULTI-MISSION SENTINEL SATELLITE DATA

Kazi Rifat Ahmed¹, Eugénie Paul-Limoges¹, Erfan Haghighi ^{1,2}, Alexander Damm^{1,2}

¹Remote Sensing of Water Systems, University of Zurich, ²Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Email: rifat.ahmed@geo.uzh.ch; Website: http://www.geo.uzh.ch/en/units/rsws.html

ABSTRACT

This study evaluates the capability of a mechanistic Earth Observation (EO) based approach to estimate ecosystem transpiration (T_r).

The approach involves multi-mission SENTINEL-2 and -3 satellite data.

Results indicate feasibility of observational approaches to estimate T_r and point to data requirements for advanced cross scale mapping of T_r .

INTRODUCTION

 T_r is an unavoidable water loss while CO_2 is assimilated by plants to drive photosynthesis [1]. T_r is an important process substantially impacting the global water and energy balance [2], [3]. Uncertainties in global T_r estimates are still substantial since T_r is constrained by a complex biological control, i.e. stomatal conductance (g_s) and models lack an adequate representation of α [4]

Data of novel satellite missions provide new avenues to advance global information of T_r

OBJECTIVES

Apply and evaluate an EO based top-down approach for estimating T_r

Assess requirements for multi-mission satellite data in support of cross scale T_c estimates.

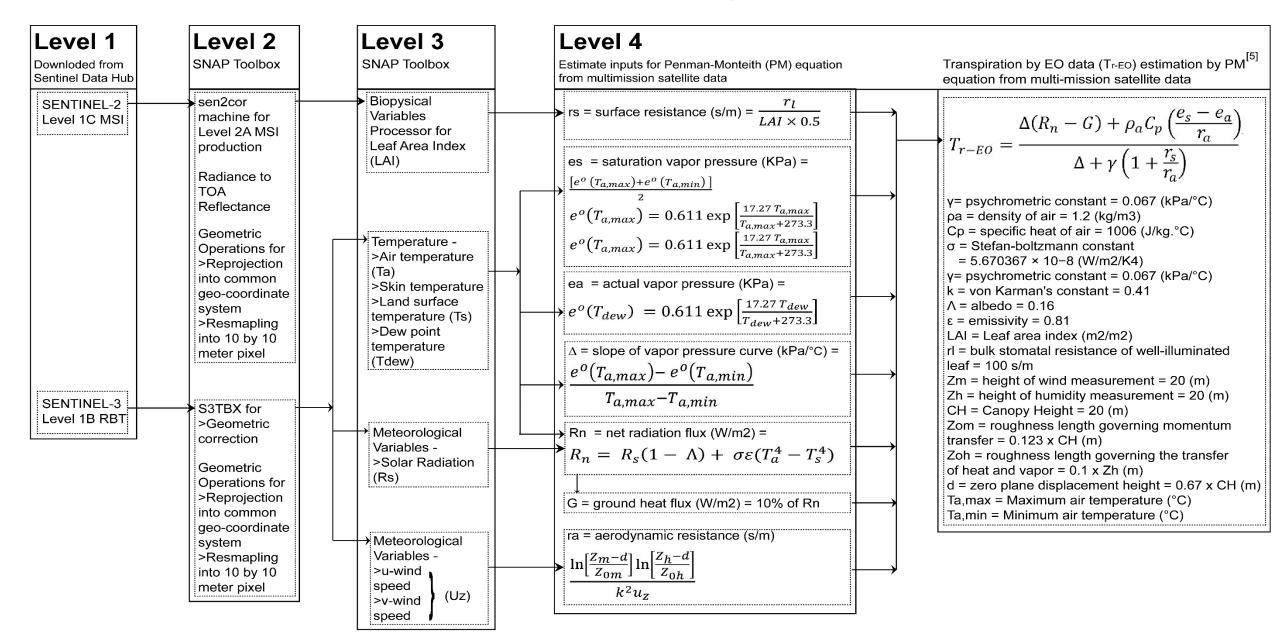
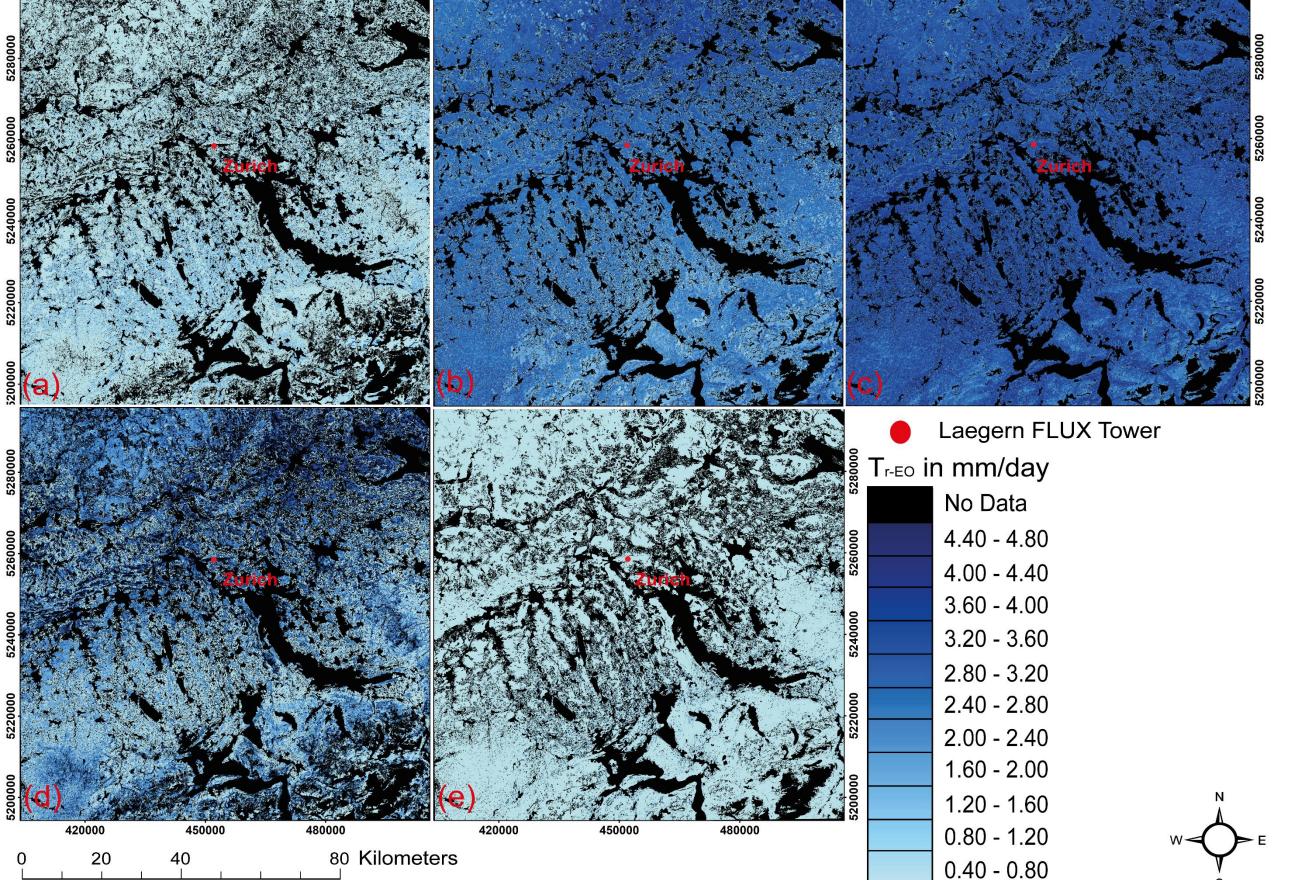

TEST SITE T32TMT Switzerland 0000825 Laegern FLUX Tower Zurich 0000725 000000 0 25 50 75 100 Kilometers

Figure 1: Test area define by a SENTINEL-2 tile (T32TMT). *Background:* SENTINEL-2 RGB from 10th April 2017 (Copernicus Open Access Hub, ESA). Vector data: www.diva-gis.org. The flux tower is located in a mixed temperate forest.

METHODS AND DATA


420000

Multi-mission Satellite Data Processing & Transpiration Estimation

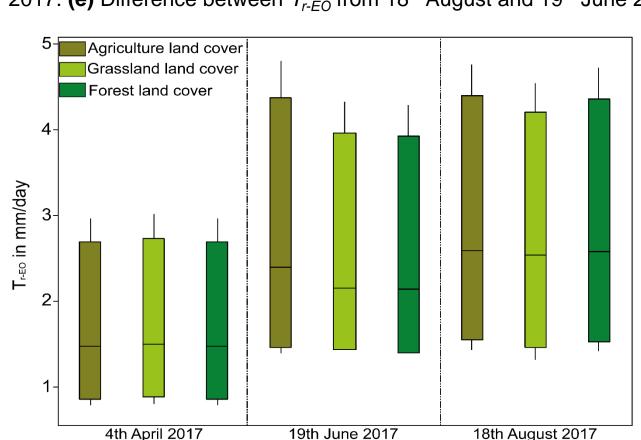


Figure 2: Overview of used satellite data, L1 – L4 processing tools and products to obtain T_r based on a Penman-Monteith modeling framework (T_{r-EO}). Additional data used for validation: Half hourly in situ measurements of evapotranspiration by an eddy flux tower.

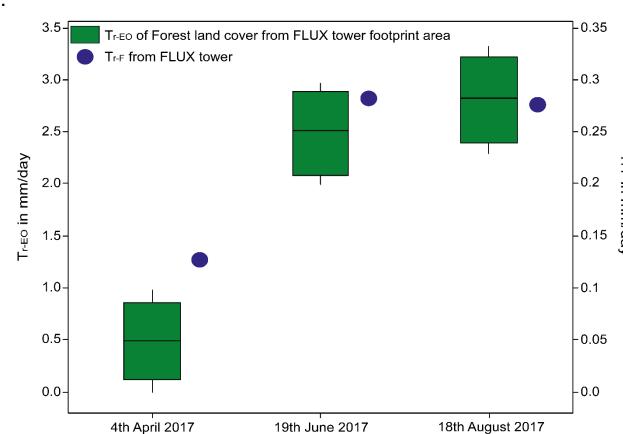

RESULTS 420000

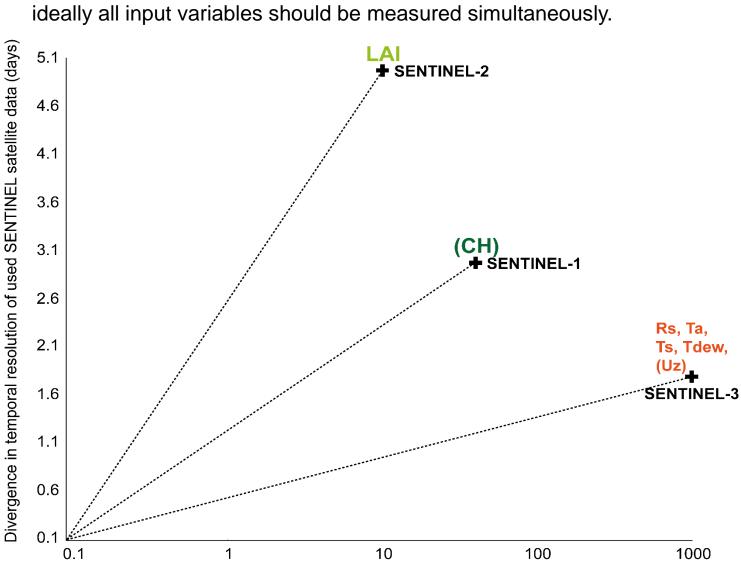
Figure 3: (a-c) Map of T_{r-EO} for 4th April, 19th June, and 18th August 2017. **(d)** Difference between T_{r-EO} from 19th June 2017 and 4th April 2017. **(e)** Difference between T_{r-EO} from 18th August and 19th June 2017.

Figure 4: Variation of T_{r-EO} for land cover classes agriculture, grassland, and forest.

Figure 5: Comparison between T_r obtained in situ from an eddy flux tower (T_{r-F}) and T_{r-EO} representing the tower footprint covering a mixed temperate forest.

DISCUSSION

 T_{r-EO} representing the Laegeren forest site well follows the annual dynamics as measured in situ but seems to overestimate T_r (**Figure 5**).


Possible explanations are that

(a) the spatial resolution of e.g. the used S3-SLSTR sensor is to coarse to map the small scale forests site. This causes a mix of land cover types in the sensors field of view.

(b) some PM input variables are not available yet and were thus assumed constant when calculating $T_{r\text{-}EO}$ (i.e. CH, Uz).

(c) used multi-sensor data diverge in their spatial resolution (**Figure 6**) and needed to be converted into a common pixel grid (10m x 10m)

(d) used multi-sensor data diverge in their temporal coverage (**Figure 6**), while

Difference in spatial resolution of used SENTINEL satellite data (m, log scale) **Figure 6:** Mismatch of spatial and temporal resolution of used SENTINEL data and derived L3/L4 products relevant to facilitate a T_{r-EO} mapping approach .

CONCLUSION

Multi-mission SENTINEL satellite data are important to facilitate a top-down T_r mapping from regional to global scale.

Not all input variables of the PM based modeling framework are available from

SENTINEL missions yet (e.g. CH) or are of insufficient quality (e.g. U_z). The divergence in spatial and temporal resolution complicates T_r assessments

since error prone resampling steps for harmonizing data and missing observations compromise the accuracy of T_{r-EO} estimates.

Combining operational SENTINEL missions with experimental ones (e.g. ESA's Earth Explorer FLEX, and Aeolus) is possibly a step forward.

REFERENCES

[¹]Jasechko, S., et al, 2013. Terrestrial water fluxes dominated by transpiration. Nature 496(7445), 347-350. [²]Hilker, T., et al., 2013. Remote sensing of transpiration and heat fluxes using multi-angle observations. Remote Sens. Environ. 137, 31–42. https://doi.org/10.1016/j.rse.2013.05.023.

[3]Lawrence, D.M., et al., 2006. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on Land-Atmosphere interaction. J. Hydrometeorol. 8, 862–880. DOI: 10.1175/JHM596.1.
[4]Dolman, A.J., et al., 2014. Fifty years since Monteith's 1965 seminal paper: The emergence of global ecohydrology.

Ecohydrology, 7, 897-902.

[5]Allen, R.G., et al., 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Papers 56: Food and Agriculture Organisation of the United Nations, Viale delle Terme di Caracalla, Rome 00100, Italy.