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‘ Abstract I "ege"TZ’NWb d 4. Results
Monitoring long-term forest dynamics is essential to as- Eftwbkd e Forest-loss and regrowth maps 1992-2014

sess human-induced land cover changes and a com-
mon practice nowadays using the Landsat archive (TLA).
However, in areas such as the Andean Amazon (TAA),
scarce data and disturbance by noise are a challenge
not yet solved by trajectory-based methods. Here, we
present an approach based on image compositing and
post-classification change detection called C-PCCD. De-
veloped as an open-source software named TFDynam-
ics (demo at: https://github.com/FSantosCodes), we ap- o _
plied C-PCCD to The Upper Napo Watershed (TUNW), — Principal sources qf.errpr were causeql by: topographic
which represents the study area in the Ecuadorian Ama- shadow, mISC|aSS.IfICB.’[I0n at stable-intervened class
zon. We found that despite limited data in TLA, C-PCCD Figure 2: Overall no data % in TUNW and unmasked artifacts

still can conduct this assessment.
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— Validation with high-resolution imagery indicaded over-
all accuracies of 0.84 and 0.78 for forest loss and re-
growth classes respectively

— Comparison with other studies showed similar patterns
for forest-loss and regrowth classes, specially with the
one based in human-interpretation [4]. However, stable
forest and intervened areas differ, affecting estimates of
forest loss and regrowth areas but not trends found
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e Standardized biennial compositing

: —Landsat imagery reduced to 11 biennial composites
‘ 1. Introduction I (period 1992-2014)
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TAA constitutes’ the most diverse and carbon-rich ecosys- Average no-data in composites: 34414% —1— -
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tems in the worlld. Deforestatlo_n IS its major threat while T T e e —
forest-regrowth is becoming an important land cover com- 151 | | 100 [ [ 200620
ponent [1]. Unsupervised algorithms [3] to monitor long- o e —— o
term forest-dynamics using TLA has reported limitations in o
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TAA since persistent cloudiness and sensors failures have (A) (B)

diminished data quantity and quality drastically. To over- ill

come these limitations, we implemented C-PCCD which o S N A T S ST ST SO S p_— | sl oo

has not yet been applied in previous research [5]. lts FFSERED DFLER DF LR DS L N . | | |

procedure consists in compositing Landsat derivatives and Years . I Tt = | p-— zzzzzz

merge them with terrain parameters to train different classi- III I I | OI I I | | .
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fiers and obtain equitemporal land cover maps. These are g
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later harmonized and passed to a change-detection func- Fiqure 3: Number of im o dlata % in Combosit &S S N LA
tion to extract forest-loss and regrowth patterns. We ap- gure s: Number ot images a 0 gata 7o Il COMPOsIes Mic-PeoolcFe2o1s M c-PcoIMLUX Giasses
plied C-PCCD to TUNW and validated our results using Model traini McEoCOmL
high-resolution imagery from different time periods. Lastly, o vodel training (L)
we compared our results with other forest-dynamics stud- — 735 training samples (4 land cover classes for one
ies based on a similar approach [2] but also in human- composite date 2002) Figure 6: (A) Forest-loss and regrowth maps 1992-2014 for
interpretation [4] for corroborate our findings. — 3016 testing samples (132-304 per composite date) TUNW. (B) Areas comparison between C-PCCD and other

— 15 classificators tested with 3 variables ensambles studies (GFC2015 and MLUX refers to references [2] and

_ contribution (25%, 50% and 75%) but neural networks [4] respectively
‘ 2. Study Area & Research Questions I with principal component analysis (pcaNNet) outper-
formed

verse and complex landscape mosaics and rainfall regimes
(1.100-5.300 mm per year). lts name came from the Napo
River, a tributary of Amazon river and a historical water-
way. Land cover in 2014 [4] indicates: 88% natural vegeta-
tion, 7% pastures, 2% permanent crops and 3% other cov-
ers. Main urban centers are: Francisco de Orellana (40.730
inh.) and Tena (23.307 inh.). Our research questions are:

e Is C-PCCD a feasible approach for monitor long-term for-
est dynamics in TAA? Which is the workflow required?

TUNW covers an area of 12.445 sg.km. and has an al- N R
titude gradient from 260 to 5.600 m a.s.l.; resulting in di- : ‘ |

e Despite its limitations and errors, C-PCCD demostrated
to be a better (almost factible) approach for long-term for-
est dynamics in TAA rather than trajectory-based meth-
ods, as previous research in this project experimented in
TUNW [6]

e Further development is required to solve known-errors
and improve some phases (eg. reclassification rules de-
= sign, interpretation of validation samples) and products
(A) (B) (eg. implementation of more complex land cover legends,

 Which forest dynamics patterns can be found in TUNW - giq,re 4: (4)Trainng samples at TUNW, (B) fiela-photos of monitor other non-forested ecosystems)
for the period 1992-2014? Are similar to other studies? the land cover classes mapped e Regarding forest dynamics in TUNW, C-PCCD results
match patterns found in other studies while shown more
Legend e Post-classification change detection detail. Nonetheless, further research using other C-
N E?Nwm””m — Trained classifier is applied to all composites biennials PCCD products (land cover intensities, forest age) could
| e L ;"‘i%g _E;o_idb —Land cover maps harmonized using reclassification contribute to this objective.
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Figure 1: TUNW study area

‘ 3. Material & Methods I

e Landsat pre-processing & other satellite imagery used

— 288 Landsat images level L1T (7245 for 4 footprints)
— CFmask screening (filter <80 % no-data) + c-correction
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— Calculated derivatives: Vegetation indices, band ratios (A)
— High-resolution imagery: aerial photography, ASTER, classification test. (B) Example of a validation sample plot. SENESCYT - Convocatoria Abierta 2012. The author
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